Quantum-classical reinforcement learning for decoding noisy classical parity information
نویسندگان
چکیده
منابع مشابه
Noisy quantum cellular automata for quantum versus classical excitation transfer.
We introduce a class of noisy quantum cellular automata on a qubit lattice that includes all classical Markov chains, as well as maps where quantum coherence between sites is allowed to build up over time. We apply such a construction to the problem of excitation transfer through 1D lattices, and compare the performance of classical and quantum dynamics with equal local transition probabilities...
متن کاملQuantum Theory and Classical Information
Transmission of classical information using quantum objects such as polarized photons is studied. The classical (Shannon) channel capacity and its relation to quantum (von Neumann) channel capacity is investigated for various receiver arrangements. A quantum channel with transmission impairment caused by attenuation and random polarization noise is considered. It is shown that the maximal (von ...
متن کاملComputational quantum-classical boundary of noisy commuting quantum circuits
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being sub...
متن کاملA Quantum to Classical Phase Transition in Noisy Quantum Computers
The fundamental problem of the transition from quantum to classical physics is usually explained by decoherence, and viewed as a gradual process. The study of entanglement, or quantum correlations, in noisy quantum computers implies that in some cases the transition from quantum to classical is actually a phase transition. We define the notion of entanglement length in ddimensional noisy quantu...
متن کاملSeparating Quantum and Classical Learning
We consider a model of learning Boolean functions from quantum membership queries. This model was studied in [26], where it was shown that any class of Boolean functions which is information-theoretically learnable from polynomially many quantum membership queries is also information-theoretically learnable from polynomially many classical membership queries. In this paper we establish a strong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Machine Intelligence
سال: 2020
ISSN: 2524-4906,2524-4914
DOI: 10.1007/s42484-020-00019-5